Rainbow cycles in edge-colored graphs

نویسندگان

  • Roman Cada
  • Atsushi Kaneko
  • Zdenek Ryjácek
  • Kiyoshi Yoshimoto
چکیده

Let G be a graph of order n with an edge coloring c, and let δ(G) denote the minimum color degree of G, i.e., the largest integer such that each vertex of G is incident with at least δ(G) edges having pairwise distinct colors. A subgraph F ⊂ G is rainbow if all edges of F have pairwise distinct colors. In this paper, we prove that (i) if G is triangle-free and δ(G) > n3 + 1, then G contains a rainbow C4, and (ii) if δ (G) > n2 +2, then G contains a rainbow cycle of length at least 4.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Rainbow Cycles and Paths

In a properly edge colored graph, a subgraph using every color at most once is called rainbow. In this thesis, we study rainbow cycles and paths in proper edge colorings of complete graphs, and we prove that in every proper edge coloring of Kn, there is a rainbow path on (3/4− o(1))n vertices, improving on the previously best bound of (2n + 1)/3 from [?]. Similarly, a k-rainbow path in a proper...

متن کامل

Rainbow Connection in Brick Product of Odd Cycle Graphs

Abstract. Let G be a nontrivial connected graph on which is defined a coloring N k k G E c ∈ → }, ,...., 3 , 2 , 1 { ) ( : , of the edges of G, where adjacent edges may be colored the same. A path in G is called a rainbow path if no two edges of it are colored the same. G is rainbow connected if G contains a rainbow v u − path for every two vertices u and v in it. The minimum k for which there ...

متن کامل

On Rainbow Cycles

We prove several results regarding rainbow cycles within edge-colored complete graphs. We refute a conjecture by Ball, Pultr, and Vojtěchovský [BPV05] by showing that if such a coloring does not contain a rainbow n-cycle, where n is odd, then it also does not contain rainbow cycles of all sufficiently large lengths. In addition, we present two examples which demonstrate that this result does no...

متن کامل

On rainbow cycles in edge colored complete graphs

In this paper we consider optimal edge colored complete graphs. We show that in any optimal edge coloring of the complete graph Kn, there is a Hamilton cycle with at most √ 8n different colors. We also prove that in every proper edge coloring of the complete graph Kn, there is a rainbow cycle with at least n/2−1 colors (A rainbow cycle is a cycle whose all edges have different colors). We show ...

متن کامل

Color Degree Sum Conditions for Rainbow Triangles in Edge-Colored Graphs

Let G be an edge-colored graph and v a vertex of G. The color degree of v is the number of colors appearing on the edges incident to v. A rainbow triangle in G is one in which all edges have distinct colors. In this paper, we first prove that an edge-colored graph on n vertices contains a rainbow triangle if the color degree sum of any two adjacent vertices is at least n+ 1. Afterwards, we char...

متن کامل

On Lengths of Rainbow Cycles

We prove several results regarding edge-colored complete graphs and rainbow cycles, cycles with no color appearing on more than one edge. We settle a question posed by Ball, Pultr, and Vojtěchovský [BPV05] by showing that if such a coloring does not contain a rainbow cycle of length n, where n is odd, then it also does not contain a rainbow cycle of length m for all m greater than 2n. In additi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Discrete Mathematics

دوره 339  شماره 

صفحات  -

تاریخ انتشار 2016